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Dedicated to Dr R. Zahradnik whose early vision of application of ab initio methods to the 
study of molecular interactions had a great impact on developments in biodisciplines and a profound 
effect upon the research careers of many scientists including the authors. 

High-quality Gaussian basis sets of the well-tempered type, containing three sets of polarization 
functions on all atoms, are used to investigate the interaction of Li+ with HF, OH2 , and NH3 . 

These sets reproduce the SCF and MP2 energies of the various monomers very well and, more
over, accurately treat the multi pole moments and polarizabilities of the monomers. When ap
plied to the complexes, the sets are essentially free of primary and secondary basis set superposi
tion error at the SCF level; MP2 extension effects are also completely negligible while basis set 
superposition effects are small but non-negligible. Analysis of the correlation corrections to the 
molecular properties, coupled with comparison of the interaction of the bases with a point 
charge, provides a straightforward explanation of correlation contributions to the interaction 
energy. Recommendations are provided to guide selection of basis sets for molecular interactions 
so as to avoid distortion of the various components. 

During the period of the late 1970s and early 1980s, there was a burst of optimism concerning 
accurate calculation of molecular interactionsl - 4 , occasioned by the rapid advances in computa
tional hardware and software which allowed unprecedented levels of electron correlation to be 
applied to this problemS. More recent work, however, has dampened some of the initial enthu
siasm by indications that quantitative accuracy requires basis sets of truly large proportions. 
As an example, Frisch et a\.6 were unable to reproduce the experimental H-bond energy of the 
water dimer 7 even when fourth-order perturbation theory was applied to a 6-311 + + G(3df, 3pd) 
basis set, containing 162 basis functions in all. Chalasinski and coworkers have demonstrated 
the need to include polarization functions up to 1= 5 in order to saturate the dispersion energy 
of a system as simple as He2 8 • For molecules as simple as H 20 or HF, simultaneous saturation 
of the Hartree-Fock energies and monomer properties requires Gaussian expansions of about 
140 basis functions9 . Hence, recent developments convincingly demonstrate that the basis set 
problem is far from resolved for molecular interactions. 

Let us now consider supermolecular calculations of interaction energies which are forced to 
resort to a finite basis set. Consistency requires the complex to be represented by the same basis 
as the individual subunits as originally pointed out by Boys and Bernardi in 1970. However, 
this is generally not the case since the basis for the complex contains the orbitals of both the 
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individual subunits. Representation of the individual subunits within the full dimer basis set was 
dubbed the functional counterpoise approach by Boys and BernardilO • 

Since the addition of the orbitals of a given subunit will lower the energy of its partner, cor
rection of the basis set superposition error by the counterpoise procedure adds an apparent 
repulsive component to the interaction energy. This correction will typically be rather large for 
poor basis sets. If the uncorrected interaction energy happens to be fairly close to the experimental 
result through some fortuitous cancellation of errors, addition of the correction can "worsen" 
the calculated result6,11-14. In fact, a poor basis set would not be expected to produce an 
accurate interaction energy and the corrected result is entirely appropriate to such a set, even 
if further removed from experiment. 

Nevertheless, the magnitude of the counterpoise correction for poor basis sets, coupled with 
the fact that the corrected potentials were more repulsive than w.::re hoped for, fueled speculation 
that the counterpoise procedure overestimates the true variational lowering of the subsystem 
energy in the basis set of the entire complexll •13 . A good deal of ingenuity and computational 
effort has been expended in dispelling this misconception15 ,16. 

The variational lowering of energy due to the partner's orbitals is magnified at correlated 
levels. Even in basis sets which are well saturated at the Hartree-Fock level, correlated counter
poise corrections can substantially exceed the true contribution of correlation to the interaction 
energy6,14,17, Indeed, Szalewicz et al.18 presented results which suggest that the magnitude of 
the MP2 counterpoise correction can increase as the basis set is enlarged. This finding is not 
surprising when one considers the difficulty of saturating a two-electron basis set in comparison 
with its one-electron analog. There have been recent suggestions that (contracted) basis sets 
optimized against Hartree-Fock atomic energies are inherently poor frameworks for computa
tion of correlation energy, For example, AlmlOf and Taylor19 have proposed using as contraction 
coefficients the natural orbital expansions from atomic CI calculations as an alternative. (The 
6-311 G set of Pople and coworkers may serve as another example of a basis set optimized for 
correlation effects2o.) 

Unfortunately, there are no clear recipes for formulation of basis sets which will uniformly 
treat all the correlation effects in molecular interactions. In light of the slow convergence of 
dispersion energy, it is advisable to use a number of diffuse polarization functions with high 
quantum number I. Substantially larger exponents are usually used for proper treatment of 
intrasystem correlation; however, a larger number of such functions may be required than is 
customarily employed 1 9. Overall, it is clear that more detailed work is warranted since it appears 
that unsaturation of the intrasystem correlation energy lies at the heart of the large counterpoise 
corrections noted at correlated levels. 

While the counterpoise procedure eliminates the direct consequences of the variational im
provements in subsystem energies, it does not remove the influence on the interaction energy 
terms resulting from modifications in subsystem molecular properties due to the presence of the 
partner's orbitals. These changes are often termed basis set extension or higher-order basis set 
superposition effects. Karlstrom and Sadlep 1 first pointed out that in the supermolecule ap
proach, the properties of each subunit, e.g. moments and polarizabilities, are actually being 
described within the basis set of the entire complex and not those of the subunits. As one example, 
consider the interaction between a pair of neutral atoms which obviously contains only a penetra
tion-type Coulomb component. Nevertheless, the presence of the orbitals of atom B leads to 
a spurious dipole moment on A (and vice versa). Interaction between these two dipoles produces 
a multi pole Coulomb energy (and some changes in the penetration part), purely an artifact of the 
supermolecule treatment. 

The sensitivity of molecular properties to the presence of the partner's orbitals can be sur
prisingly high. For example, it was found recently22 that the parallel component of the SCF/ 
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/6-3IG** dipole polarizability of NH3 increases by nearly 3 a.u. (c. 50%) in the presence of the 
ghost orbitals of a Li+ cation centered 3 A from the nitrogen, while the dipole moment rises 
by 0'17 D, or 10%. With basis set extension effects of this magnitude, the higher-order BSSE 
may exceed the primary error. 

In general, correct description of molecular properties is a necessary condition for a balanced 
treatment of the polarization terms· in interaction energies. These properties reflect the quality 
of the wave function in the region distant from the nuclei where the interaction actually occurs. 
Proper description of this so-called tail region guarantees also an appropriate representation 
of the exchange terms 15 • 

The majority of standard basis sets which are optimized against the Hartree-Fock energy are 
designed to study primarily the geometries of common molecules. Hence, one can hardly expect 
such basis sets to produce consistent results for interaction energies in weakly bound systems. 
Yet it was just such an inconsistency that led Schwenke and Truhlar24 to conclude that counter
poise corrections are of little use. What these authors apparently failed to consider is that 
a primary difficulty arising from use of various types of basis sets, which the counterpoise 
procedure cannot correct, is their inconsistent reproduction of monomer properties. Indeed, 
when the choice of basis set focuses on molecular properties, the corrected interaction energies 
are vastly more consistent than the uncorrected values for a number of different systems t8.2 5. 

There are thus a number of overriding considerations in selection of a basis set for molecular 
interactions. It is first necessary to reproduce the various properties of each subunit as accurately 
as possible so as to correctly describe the nature of the interaction. The sensitivity of these pro
perties to the approach of the partner's orbitals should be minimized in order to diminish the 
basis set extension effects. Care in these matters should be exercised not only at the SCF but at 
correlated levels as well. For example, failure to properly describe the correlation corrections to 
the properties would likely introduce an imbalance into the correlation corrections to the inter
action energy. A similar consideration applies to the desired low sensitivity of the computed 
energy of each subunit to the preser.ce of the orbitals of its partr.er. 

Unfortunately, the various criteria mentioned above are best satisfied by different properties 
of the basis set. As mentioned above, Hartree-Fock optimized basis sets are no guarantee of 
proper reproduction of multi pole moments and polarizabilities, nor of good correlation energies. 
On the other hand, a basis set which yields the correct dipole moment may be inappropriate for 
describing correlation correctior.s to this momer.t. 

Our goal in the present work is to attempt to take all of the above considerations 
into account and perform benchmark calculations using basis sets of very high 
quality, especially designed for molecular interactions. We intend to properly account 
for all the terms of the interaction energy which occur in the supermolecule approach. 
The basis sets are chosen also so that the superposition and extension effects will be 
vanishingly small. Only by minimizing these artifacts can the contents of the super
molecule interaction energies be analyzed with any degree of confidence. The systems 
selected for study are the interactions between Li + -and the bases NH3 , OH2 , and 
HF. The SCF portion of the interaction energy contains all terms present in mole
cule-molecule systems but is somewhat more amenable to analysis due to the compact, 
highly non polarizable nature of Li +. This low polarizability effectively precludes 

• Polarization terms are here defined as those obtained from the polarization RSPT such 
P.S Coulomb, induction, dispersion, etc; see Jeziorski and Kolos23. 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



Components of Interaction Energies 2217 

any dispersion energy, greatly simplifying the analysis of correlation contributions 
to the interaction, restricting them mainly to intrasystem type (which are in general 
less well understood than intersystem terms). 

THEORETICAL AND CALCULATIONS 

Basis Sets 

Huzinaga and Klobukowski have derived high-quality Gaussian expansions, termed 
well-tempered, for a number of atoms, including N, 0, F, and Li, designed for 
work within the generalized Raffenetti contraction scheme26 •27 . 15 values of the 
exponents (at. ... , alS) were optimized within the 4-parameter well-tempered crite
rion, maintaining well spaced exponent values common to s, p, d, etc. radial functions. 
The exponents cover a wide range of values from quite large to very small. The latter 
are diffuse enough so that no additional "soft" functions are necessary. A basis set 
of this type is expected to be much better than often-used smaller sets which are 
augmented by diffuse functions chosen in a more or less random fashion. 

Only exponents I -14 are used in the s-set; a 6 through a15 are used within the 
p-set. The (14s, 8p) set was contracted for N, 0, and F to [7s,6p] according to the 
contraction scheme optimized by Klobukowski et al. 2 8 and displayed in Table I. 
Note that the last 5 s-orbitals share exponents with the first 5 p-functions. Also, the 
exponents are repeated in different contractions, providing the advantage of genera
lized contraction within the framework of segmented contraction available in most 
computer codes. The scheme used for Li was slightly different than for the other 
three atoms, and reproduced the Hartree-Fock limit of Li + with accuracy much 
better than O'lIlH (1 H = 2625·5 kJ/mol). Huzinaga's lOs expansion of H (ref. 29) 

was contracted as reported in Table I. 

TABLE I 

Orbital contraction scheme 

Orbital N,O,F Li H Orbital N,O,F 
------- --~-I----------

1.1' IX[-II.S 1X 1 -1X6 

2.1' (;(0-1X 12 1X 7 - 1X 8 

3.1' 1X6 -1X 10 1X9-1I.10 

4.1' 01: 11 01: 11 

5.1' 1X12 01: 12 

6.1' 1X13 11.13 

7.1 11.14 11.14 
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One of the most attrative features of the well tempered basis sets is the capability 
of sharing of exponents between s, p, d,f types of functions. For example, using the 
four or five lowest exponents for the d-functions would provide a wide range of 
values; the compact functions would provide an adequate framework for intra
-atomic correlation while the smaller exponents would permit a good description 
of polarizability, dispersion, etc. However, since computational resources restrict 
us to 3 sets of d-functions, we followed the suggestion of Werner and Meyer in 
choosing their exponents30. CXE, the exponent of the first d-function, was derived by 
maximizing E(2), the second-order Meller-Plesset perturbation correlation energy of 
each subunit; the values obtained are reported in Table II. Maximization of the 
transverse component of the dipole polarizability of NH3, OH2, and HF (perpendi
cular to the principal symmetry axis; this component saturates most slowly) led to 
a second exponent, herein denoted as CXpol' Werner and Meyer predict the ratio 
CXE/CXpol will typically be '" 8, quite close to our own findings here. In addition to cxE 

which was used unmodified, the exponents chosen for the other two d-functions 
were (2/3) CXpol and 2CXpo b leading to a set of three well-spaced d-exponents.The latter 
value assures a good representation of the dipole moment30. A similar procedure 
was used to obtain the exponents of the three p-functions of hydrogen, optimized 
for HF and then applied to all three systems. All the exponents of polarization 
functions are listed in Table II. 

Due to the compact nature of its charge distribution, the Li+ ion is quite unpola
rizable and its basis set was hence augmented only by polarization functions of 
p-type. * Although the absence of d-orbitals limits the amount of angular correlation 
that can be recovered, this feature is not particularly important from the perspective 
of molecular interactions which we are studying here. We should note that even 
without d-functions, the correlation energy calculated for Li+ with our [7s5p] 
basis set (see Table III) is about 70 times larger than that obtained with the standard 
6-31 G* basis which does include a d-function. The frozen-core approximation was 
used in calculating the properties described below whereas no orbitals were frozen 
when computing the interaction energies. Pure spherical harmonic d-functions were 
used throughout. With respect to geometries, experimental bond distances and 
angles were used which are identical to those adopted in previous property calcula
tions30.32 so as to facilitate comparisons (for HF r = 1'7325ao; for H20 rOH = 

= 1'808847ao, e(HOH) = 104'524°; for NH3 rNH = 1'9132ao, e(HNH) = 107·66°). 

• The very low polarizability of Li + may be appreciated by the following comparison. 
Although this set containing p-functions allows only for dipole polarizability, this quantity is 
exceedingly low for Li + at the SCF level (our finite field value is 0'1885 au, compared to the 
best CHF result of 0'1896 (ref. 31 », more than 7 times smaller than the SCF dipole polarizability 
of isoelectronic He. 
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Molecular Properties 

Quite frequently, basis sets which accurately reproduce the molecular properties 
do so at the expense of the total energy at the SCF level30 ,32, a factor which generally 
leads to large basis set superposition error in the complex (and also to inaccurate 
monomer geometries). As illustrated by the results presented in Tables III - V, such 
is not the case with our basis sets. For example, the SCF energies reported in the 
first column of Table III are within several mH of the Hartree-Fock limit, listed in 
the succeeding column. Our wavefunction for water yields the same SCF energy as 
a 39-term STO function; the corresponding E(2) represents 97% of the total obtained 
with this function33 • We expect results of similar quality for the remaining hydrides. 
The next several columns illustrate that despite the cutoff of the perturbation expan
sion at second-order, our MP2 energies are within about 75% of the estimated total 
correlation energies. 

The values calculated at the SCF and MP2 levels for the dipole moment and 
po]arizability tensor elements are reported in Table IV along with previous calculated 
and experimental data for purposes of comparison. Our SCF values compare quite 
favorably with the previous calculations of Werner and Meyer (WM) who used 

TABLE II 

Exponents of polarization d-functions (heavy atoms); p-functions on Hare 1'0,0'316,0'1 

Molecule O:E 2ocpo l (2/3) O:pol 

HF 1'74 0·46 0'153 
OHz 1'25 0'30 0'10 
NH3 0'9 0'22 0'075 

---------

TABLE III 

Total SCF and correlation energies (a.u., 1 a.u. = 2 625' 5 kJ Imol) of subunits 

Molecule ESCF E(lim)" ESCF -- E(lim) E(2) Ecorr (lim)b % corr 

HF -100'06834 -100'0706 0'0023 -0,28423 -0'379 75 
OHz -76'06423 -76'0675 0'0033 -0,27309 -0'372 73 
NH3 -56,22185 -56'226 0'004 -0'24762 - O· 334 ± '004 74 
Li+ -7'23641 -7'23641 0'0000 -0'02764 

" Hartree-Fock limit quoted after ref. 9 for all except Li+; b quoted after ref.9. 
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a [lls6p3dJ basis set, reportedly essentially un contracted in the valence region for 
heavy atoms. Moreover, they are in very good agreement with the state-of-the-art 
results of Sadlej et al.34,35, calculated with a (12s8p3dlf) basis set contracted to 
[8s5p3dlfJ. The only appreciable discrepancy resides in the polarizability of NH3 
which is somewhat smaller than Werner and Meyer's results (neither were Diercksen 
and Sadlej able to reproduce the latter data). 

The correlation contributions to the molecular properties are generally in very 
good agreement with previous results, another indication of the quality of the 
reference function. These contributions are very important as they playa dominant 
role in determining the values of the MP2 correction to the interaction energy (see 
below) and hence should be carefully examined. 

As seen from the footnotes in Table V, the quadrupole moments differ from the 
best Hartree-Fock values by about 0·1 a.u. This discrepancy is perhaps disappointing 
since it indicates good reproduction of this property requires j-type polarization 
functions, as demonstrated by previous work9 ,36. 

The susceptibility of the molecular properties to basis set extension effects may 
be checked by evaluating the multipole moments within the dimer basis set. The 
values computed at the SCF level for the dipole and quadrupole moment of the bases 
in the presence of the ghost orbitals of Li + at a distance R from the base, along its 
principal symmetry axis, are listed in Table V. Approach of these ghost orbitals 
from infinity to as close as 2 A from the heavy atom has a negligible effect (0·01 - 0'05%) 
on the dipole moments. The quadrupole moments change to only a slightly greater 
degree, remaining within 0'05%-0'5% of their values in the absence of the ghost 

TABLE V 

SCF dipole and quadrupole momentsQ (a.u.) calculated including ghost orbitals of partner Li + 

R HF OHz NH3 

A 
f.1 Qzz f.1 Q xx Q yy J1. Qzz 

2 0'7570 1'8809 0·7810 1'8156 -1'9228 0'6371 -2'0000 
3 0'7569 1-8£07 0·7811 1'8152 -1'9263 0'6370 -2'0030 
4 0'7569 1-8803 0'7811 1'8151 -1·9265 0'6369 -2'0072 
5 0'7569 1'8802 0·7810 1'8151 -1·9265 0'6368 -2'0091 
00 0'7569 1'8800b 0'7810 1'8151 c -1'9265c 0'6368 -2'01OI d 

a With respect to heavy atom; b center of mass value is 1'6182; numerical H-F value is 1·7321; 
exp: 1'7; c center of mass values: Q xx = 1'9880, Q yy = -1'7536; estimated H-F limit: Q xx = 

= 1'899; exp: Qxx = 1·96 ± 0'01; d center of mass value: -2·2856; estimated H-F limit: -2'159; 
exp: -2,42 ± 0'04. 
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orbitals. (The corresponding spurious dipole moment of Li + is exceedingly small, 
only c. 10- 7 a.u.; and may hence be neglected.) The Cz and C3 Coulomb coefficients 
will change by the same proportional amount when the full basis set is employed, 
leading to a combined error in the Coulomb energy of less than 0'2% through R- 3 • 

We therefore conclude that our electrostatic interaction energies are essentially 
uncontaminated by basis set extension effects. Note also that due to the greater 
sensitivity of the quadrupole moment to basis set extension, the charge-dipole term 
cannot be used by itselfz2 to provide an accurate measure of the basis set extension 
effects in the Coulomb term since it yields only 10% of the full effect, nor should it 
serve as an estimate of the total secondary BSSE22• 

Perhaps a more complete and accurate estimate of the effects of the partner 
orbitals upon the Coulomb energy can be arrived at by computation of the electro
static potential produced by the base molecule in the position where the Li + occurs. 
Since Li + is an isotropic cation, this potential is equivalent to the total Coulomb 
energy of interaction (neglecting penetration). The columns headed by the title "B" 
in Table VI contain the value calculated when only the orbitals of the base Bare 
present; comparison with the data in the next column labeled B·· Li + illustrates the 
influence of the Li + orbitals. If we neglect the penetration, the first column cor
responds to the correct Coulomb energy of B·· Li + while the second represents 
the Coulomb energy of the same system, affected by basis set extension. Discrepan
cies between the two columns do not exceed 0'2%, the value estimated above from 
the multi pole expansion through the charge-quadrupole term. This analysis provides 
further verification of the small magnitude of higher-order BSSE with our basis set. 

As a final check, we also computed the magnitude of the basis set extension effect 
upon the SCF polarizability as well as correlation corrections to the polarizabilities 

TABLE VI 

Coulomb energy (kcal/mol)a of B" Li +. e~~~I. R represents the distance between Li + and the 
heavy atom along the principal symmetry axis. "B" and "B"Li+" indicate the basis set in which 
the Coulomb energy was calculated 

R HF OHz NH3 
Ab 

B··Li+ B"Li+ B"Li+ B B B 

2 -17,41 -17'40 -29'34 -29'43 -40'27 -40'17 
3 -9'675 -9'672 -14'12 -14'11 -17'52 -17,48 
4 -6'047 -6'044 -8'153 -8'153 -9'275 -9'324 
5 -4'120 -4'120 -5'292 -5'292 -5'728 -5,727 

a 1 kcal/mol = 4'184 kJ/mol; b 1 A = 10- 10 m. 
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and the dipole moments. As second-order properties, they should be more highly 
sensitive to the presence of the ghost orbitals. When the Li + ghost orbitals were 
placed 2 A from HF, a distance where these effects would be expected to be quite 
large, the SCF polarizability and the MP2 contribution to the dipole moment were 
not affected at all; the correlation corrections to the components of the polarizabiIity 
tensor were altered by a fraction of 1 %. 

As noted earlier, we used a set of polarization function exponents optimized against 
correlation energy and polarizability. It was deemed of interest to examine what sort 
of results would be obtained if we had instead used the exponents of the well-tempered 
sets. We therefore checked two different sets of 3 d-exponents for HF: The lowest three 
(0·2348,0·5728, 1·3780) and the next lowest (0·5728, 1·3780,3·309). (The latter set 
of three has been recommended by Klobukowski et al. for energy calculations.) 
The first set is fairly similar to our optimized exponents, only slightly more compact 
in the lower exponents. It is hence not surprising that the computed oexx of 4·351 is 
rather close to the value reported in Table IV; j1.(2) is also nearly identical. Despite 
a somewhat greater valence correlation energy (by 0·02 a.u.), the more compact 
second set causes a deterioration of oexx• yielding a value of only 3·649 while Il(2) = 
= -0·0471. We might conclude that the first triplet would suffice and has the added 
advantage for computational efficiency of shared exponents with the s, p set. 

Let us finally note that low polarization exponents do not automatically guarantee 
proper description of polarizability. For example, in another calculation of HF we 
used a sequence of d-function exponents 8oe, 2oe, 2oe/3 where oe = 0·09, a slightly larger 
value than the smallest p-exponent 0·077 of F. The transverse component of the 
polarizability was found to be slightly smaller (4·44 a.u.) than with our optimized 
set (4·47 a.u.). 

Interaction Energies 

In considering the interaction of a base with Li+, it is instructive to compare with the 
result calculated when the Li + is replaced with a positive point charge, i.e., a proton, 
p +, having neither orbitals nor electrons. The SCF interaction energy of B·· Li + 
is comprised of Coulomb and induction terms plus their exchange counterparts. 
The exchange effects are absent in B··p +, as are the penetration parts of Coulomb 
and induction energies. Since the penetration terms should be negligible due to the 
highly compact nature of Li +, and since the basis set extension effects upon the 
Coulomb energy have been demonstrated above to be extremely small, it is safe to 
assume that the Coulomb energies of interaction of a base with Li+ and p+ are essen
tially identical. In the case of the induction energy, contributions of the sort B -+ Li +, 
designating polarization of Li + by the base, can be safely ignored due to the very 
small polarizability of Li +. The remaining component. representing the inductive 
effect of the cation on B, wiIl be similar for either Li + or p + . 
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At the MP2 level, the supermolecular interaction energies are as follows 37 : 

B .. Li+: dE~~ = e~~~~ + e~;~~ + e~~~j + e~~~~-diSP + 
+ induction correlation (Li+ --+ B) 

B"p+: dEW = e~~~l + induction correlation (p + --+ B) , 

(1) 

(2) 

where the subscripts and superscripts have their usual meaning. "Induction correla
tion" denotes changes in the induction energy due to intrasystem correlation. The 
uncoupled Hartree-Fock (UCHF) dispersion term e~~sOj, along with its exchange 
counterpart, should be quite small in Eq. (1), again due to the very low polarizability 
of Li +' (0·1885 a. u.). Taking into account the above assumptions, the differeI1ces 
between the correlation corrections to the Li + and p + interaction energies, Eqs (1) 
and (2), can be attributed mainly to exchange effects. 

The calculated interaction energies of the three bases with Li + are reported in 
Table VII, both with and without counterpoise correction. While extremely small 
at the SCF level (less than 0·01 kcaljmol), the MP2 counterpoise corrections are 
considerably larger, 0'07, 0'16, and 0·28 kcaljmol for HF, H 20, and NH3 at R = 2 A, 
respectively. Nevertheless, the BSSE remains even in this case a rather small fraction 
of the total MP2 contribution to the interaction energy. 

The strength of the interaction follows the order NH3 > OH2 > HF, consistent 
with the trend in basicity. Electron correlation is generally destabilizing, with one 
exception to be discussed below. 

The columns labeled p + pertain to the interaction energy calculated when Li + 
is replaced by a proton. Comparison with the data in the preceding columns demon
strates near coincidence for distances of 3 A or more, particularly with the counter
poise-corrected Li + interaction energies. The distance at which the Li + and proton 
data begin to diverge is somewhat larger for NH3 , c. 3 - 4 A. Closer approach leads 
to a more attractive potential for the proton since the repulsive exchange forces 
are absent in this case. 

It is in,teresting that the MP2 contribution to the interaction energy of NH3 with 
either Li + or a proton becomes negative and passes through a minimum at approxi
mately R = 3 A. In the case of H 20, correlation makes a destabilizing contribution 
to its interaction; the behavior with a proton shows a maximum at about 3 A. 

Further analysis of the correlation contribution to the interaction in the proton 
case helps explain these curious trends. The leading C~2) term in the multipole ex
pansion of e~~~l is proportional to the correlation correction to the dipole moment 
of the base. As noted earlier in Table IV, jL(2) is negative, and thus C~2) = - jL(2) adds 
a repUlsive component to e~~~l. * This term is dominant at long distances and ex-

* From the values of the second-order correlation corrections to the quadrupole moments 
of refs34 ,35, it is anticipated that the Coulomb C~2) coefficients will also be repulsive for HF, 
H2 0, and NH3' 
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plains the positive contributions to LlE~~ at R = 4 or 5 A for all bases. At the same 
time, however, second-order correlation effects increase the polarizability of each 
base (see Table IV), thus enhancing the attractive induction component through 
C~2) ;;::: - iX(Z). Due to the R - 4 dependence of the latter term, it becomes progressively 
more important at short range and eventually causes LlE~~(p+) to decrease as the 
proton approaches OHz. The particularly large value of O(Z) for NH3 permits the 
correlation-enhanced induction energy to overwhelm the repulsive contribution 
from 6~~~1, leading to the negative values of LlEW(p+) for this base in Table VII. The 
effects are quite similar when Li + replaces the proton, except for the repulsive 
exchange energy which becomes important in the 2 - 3 A range. The combination 
of a large negative value of j.L(Z) for HF and a fairly small iX(Z) lead to the repulsive 
character of LlE~~, particularly for the proton at R = 2 A. 

One can estimate the induction energy for B"p + by subtracting the electrostatic 
energy in Table VI from the total LlESCF(p+) in Table VII. At any distance R, the 
induction energies for the three bases NH3 : OHz : HF are in the approximate ratio 
4 : 2 : 1, obeying the same trends as the polarizabilities of the bases. 

TABLE VII 

Interaction energiesa (kcal/mol) computed for B" Li + and B"p + 

R I'l.ESCF I'l.E~J 
A ----"---"" 

Li+ p+ Li+ p+ 

B HF 

2 -21'98 (-22-()() -25·45 1'50 (1-43) 1·27 
3 -11'16(-11'17) -11'18 0'743 (0'724) 0·760 
4 - 6'523 (- 6'526) -6'523 0'464 (0'456) 0'468 
5 -4'318 (-4'320) -4'318 0'311 (0'307) 0'311 

B = OHz 

2 - 33-82 ( - 33-83) -44'40 1-68 (I. 52) 0'350 
3 -16'60 (--16'61) -16'83 o· 578 (0' 546) 0'547 
4 - 8'952 (- 8'953) -8'948 0·410 (0'395) 0·430 
5 - 5'613 (- 5·613) -5'612 0·296 (0'291) 0·298 

B= NH3 

2 -40·18 (-40'19) -66'46 1· 51 (1'23) -0'391 
3 -21'84 (~21'85) -23'18 -0'060 (-0'112) -0'546 
4 -10'84 (-10'85) -10'85 0'018 (-0'004) 0'032 
5 -6'303 (-6'304) -6,297 0·101 (0'090) 0'110 

a Values in parentheses are uncorrected by counterpoise procedure; 1 kcal/mal = 4'184 kJ/mal. 
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As mentioned earlier, the difference between !lE for the proton and Li + is largely 
due to exchange effects in the latter. For R = 2 A, this difference at the SCF level 
ranges from a minimum of 3·5 kcal/mol for HF to a maximum of 26·3 kcal/mol 
for NH3. The MP2 differences are somewhat smaller, lying between 0·2 (HF) and 
1·9 (NH3) kcal/mol. (Since the Li + MP2 interaction contains a small amount of 
attractive dispersion energy, the latter values represent lower bounds to the true 
exchange effects.) It is important to stress that at this short distance, the cumulative 
correlation exchange effects greatly exceed their polarization counterparts for H20 
and NH 3 . * From the formal point of view, correlation corrections to the exchange 
terms are considerably more difficult to evaluate directly than are polarization 
terms. It is hence of prime importance to determine the magnitude of the error 
incurred by neglecting these effects. Since there are no exchange terms present when 
Li + is replaced by a proton, addition of !lEW(p +) to !lEsCF(Li +) provides a good 
estimate of the total interaction energy of a base with Li + in the absence of correla
tion corrections to the exchange terms. The rather small differences between the last 
two columns of Table VII, coupled to the much more dramatic variation of !lESCF 

with R, lead us to conclude that the above exchange corrections are not essential 
to good accuracy. The reader is cautioned, however, against generalizing this finding 
to interactions between neutral molecules which are characterized by much stronger 
overlap and substantially shallower !lESCF. Neglect of 8~ ~~~ would likely have a signifi
cant effect upon the position of the minimum in such complexes. 

CONCLUSIONS 

As a result of our careful selection of basis set, we believe we have produced a set 
of interaction energies that are virtuaIIy undistorted by primary and secondary 
superposition error. Moreover, the accurate reproduction of the molecular properties 
suggests that the individual components of the interaction energies are faithfully 
represented. For future applications in molecule-molecule interactions such as 
H-bonds, we would recommend adding a single set of I-functions with a small ex
ponent which maximizes the quadrupole polarizability (e.g. by the procedure de
scribed in literature36); a second set to fine-tune the quadrupole moments would 
further improve the results. Satisfactory treatment of the quadrupole polarizability 
would be particularly useful in attempts to reproduce the C 8 and C 10 portions of the 
dispersion energy. Successful reproduction of a given multipole polarizability usuaIIy 
insures proper representation of the correlation correction to the respective multipole 
moment, since both belong to the same class of second-order properties. Previous 
attempts to obtain the exponents of the polarization functions have focused on 

• From the values of the second-order correlation corrections to the quadrupole moments 
of refs 34 ,35, it is anticipated that the Coulomb C~2) coefficients will also be repulsive for HF, 
H 20, and NH3 . 
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minimization of the dispersion energy e~2i~J through the Hylleraas variational princip
le38. While this is very effective for spherically symmetric atoms, the net result of 
such a procedure for interacting molecules is likely to be optimization of secondary 
BSSE instead. 

Our fairly long "isotropic" sp-sets provide insurance that there are essentially on 
improvements of the monomer energies due to the partner's diffuse polarization 
functions. However, this approach is not a sufficient safeguard for the correlated 
level where the BSSE was found here to rise as we progress from HF to NH3. How
ever, if one considers that in H3N·· Li + the cation is already "buried" in the lone 
pair of N, i.e. it resides at a "chemical distance", the latter error may be viewed as 
quite small. Moreover, judicious choice of well-spaced 3d and 3 p polarization 
functions effectively precludes additional improvement of dipole polarizability by 
the orbitals of the partner. The latter orbitals may contribute strongly to quadrupole 
polarizability which is insufficiently described due to the lack of j-functions. How
ever, the energetic consequences of this contamination should be fairly minor except 
at very short distances. 

In some previous calculations of interaction energies a large set of polarization 
and diffuse sp-functions was added to an isotropic set such as 6-311G which does not 
describe the core very well, resulting in poor monomer energies ( and geometries). 
Although such an approach would most likely lead to a very good description of 
molecular properties, the energies of each subsystem will substantially decrease 
when the partner functions are added. On the opposite end are basis sets for molecular 
interactions which are prepared by minimization of monomer energies which are 
optimized in a molecular setting39 .4o, a prescription which tends to lower the primary 
BSSE. Since a small value of BSSE is no guarantee of a balanced description of the 
interaction energy, modification of the isotropic part of the basis set so as to diminish 
its sensitivity to ghost orbitals can lead to an overly rigid set which cannot treat 
second-order properties correctly. In such a case, large basis set extension effects 
may occur, distorting the polarization terms at the SCF and correlated levels. 

The foregoing analysis has shown that the smallness of the correlation contribution 
to I!J.E is due to cancellation among terms of different sign. The correlation correction 
to the exchange terms and e~~~l are both positive while the correlation correction 
to the induction energy is attractive. An improper balance amongst these terms 
could produce an incorrect sign for I!J.E~~, as seen in prior calculations (refs1.22.41.42, 
see also discussion in ref.43). 

The rather large magnitude of the induction effects in I!J.E~~ is somewhat disap
pointing since these effects cannot be rigorously interpreted within the framework 
of intermolecular perturbation theory23, adding complexity to analysis of super
molecular results37. However, this problem should be alleviated to a large extent 
when considering interactions between neutral molecules where the induction 
deformation is much smaller than in the cation-molecule case discussed here. 
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Our crude estimates of the correlation corrections to exchange terms lead us to 
believe that these effects are quite small in cation-molecule interactions, not sur
prising in light of the small overlap. In fact, total neglect of these effects would lead 
to no qualitative changes. We hesitate to extend this conclusion to molecule-molecule 
interactions such as H-bonds and charge-transfer complexes with their stronger 
overlap, however. Although the 8~~:~ correction has not yet been computed directly 
except for atoms, there are reasons to expect it will be comparable in magnitude to 
8~~!l (see also discussion in literature18), perhaps even larger in the vicinity of the 
vdW minimum and increasing rapidly for closer approach. Hence, incorrect inter
subunit separations may result if this term is not properly included. 

We are grateful to Dr M. Klobukowski for communicating his results to us prior to publication 
and to Prof A. J. Sadlej for reading and commenting on the manuscript. This work was supported 
by grants from the National Institutes of Health (GM36912) andfrom the National Science Founda
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